Supporting information for:

Monodentate Secondary Phosphine Oxides, a New Class of Chiral Ligands. Their Application in Ir (I)-Catalyzed Asymmetric Imine Hydrogenation.

Xiao-bin Jiang ^a, Adriaan J. Minnaard ^{a*}, Bart Hessen ^a, Ben L. Feringa ^{a*}, Alexander L. L. Duchateau ^b, Jean G. O. Andrien ^b, Jeroen A. F. Boogers ^b and Johannes G. de Vries ^{a, b*}

Ligand Syntheses

Ligand 1 was prepared according to a literature procedure¹. The ligands 2-7 were prepared in a similar manner, modified to the extent that the Grignard reagent was added to the solution of the RPCl₂ (reverse addition).

iso-propylphosphinoyl-benzene (2)²

Colorless oil, isolated yield 36%. ^{31}P (CDCl₃, 75MHz) δ 39.38 (s) ^{1}H (CDCl₃, 300MHz) δ 1.08 (dd, 3H, CH₃, J=7.33, 9.15Hz), 1.14 (dd, 3H, CH₃, J=7.32, 9.16Hz), 2.03-2.21 (m, 1H), 7.22 (dd, 1H, P-H, J=2.2, 458.28 Hz), 7.3-7.74 (m, 5H) ^{13}C (CDCl₃, 121MHz) δ 129.81, 127.71, 127.56, 126.50 (d, J =94Hz), 126.12, 125.96, 25.70 (d, J = 69.59Hz), 12.34, 11.76 HRMS (EI⁺) M⁺ for C₉H₁₃OP, 168.07264, calcd. 168.07040

The enantiomerically pure ligands were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml/min, RT, UV 254nm, n-hexane /Ethanol=92.5/7.5, t_1 =15.1min, []_D²¹ = -14.4° (C=0.25, CHCl₃), t_2 = 17.3min, []_D²¹ = +11.2° (C=0.285, CHCl₃)

2-tert-butylphosphinoyl-naphthalene (3)

White powder, isolated yield 14%. ^{31}P (CDCl₃, 75MHz) δ 47.03 (s) ^{1}H (CDCl₃, 300MHz) δ 1.18 (d, 9H, 3CH₃, J=16.6Hz), 7.17 (d, 1H, P-H, J $_{P-H}$ = 453.89Hz), 7.55-7.70 (m, 4H), 7.86-7.96 (m, 3H), 8.24 (d, 1H, J=14.41Hz) ^{13}C (CDCl₃, 121MHz) δ 133.54 (d, J=12.56Hz), 131.37, 130.65, 127.17, 126.72, 126.40, 125.54, 124.23, 124.02, 123.51, 30.72 (d, J = 69.05Hz), 21.96 HRMS (EI⁺) M⁺ for C₁₄H₁₇OP 232.10117, calcd. 232.10170

The enantiomerically pure ligands were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml/min, RT, UV 254nm, n-hexane/ethanol = 67/33, $t_1 = 5.61$ min, mp 129-131°C, []_D²¹= -38.8°(C=0.245, CHCl₃), $t_2 = 7.91$ min, mp 138-140°C, []_D²¹ = +38.5° (C=0.275, CHCl₃)

2-methoxy-tert-butylphosphinoyl-benzene (4)

Colorless oil, isolated yield 68%. ³¹P (CDCl₃, 75MHz) δ 35.58 (s) ¹H(CDCl₃, 300MHz) δ 1.15 (d, 9H, 3CH₃, J=17.09Hz), 3.83 (s, 3H, OCH₃), 6.86-6.93 (m, 1H), 7.01-7.08 (m, 1H), 7.36 (d, 1H, P-H, J_{P-H}= 484.4Hz), 7.43-7.51(m, 1H), 7.63-7.73 (m, 1H) ¹³C(CDCl₃, 121MHz) δ 159.35(d, J= 4.19 Hz), 132.42, 131.90, 119.14, 116.61, 109.05, 53.71, 30.92 (d, J=70.96Hz), 22.06 HRMS (EI⁺) M⁺ for C₁₁H₁₇O₂P 212.09790, calcd. 212.09661

The enantiomerically pure ligands were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml/min, RT, UV 254nm, n-hexane/ethanol=67/33, t_1 =3.99min, [] $_D^{21}$ =-15.1° (C=0.35, CHCl₃), t_2 =5.88min, [] $_D^{21}$ =+11.8° (C=0.365, CHCl₃).

(3,5-dimethyl)-tert-butylphosphinoyl-benzene (5)

White solid, isolated yield 65%. ^{31}P (CDCl₃, 75MHz) δ 47.76 (s) ^{1}H (CDCl₃, 300MHz) δ 1.13 (d, 9H, 3CH₃, J=16.6Hz), 2.35 (s, 6H, 2CH₃), 6.95 (d, 1H, P-H, J_{P-H} = 452.42Hz), 7.17(s, 1H, CH), 7.28(s, 1H, CH), 7.22(s, 1H, CH) ^{13}C (CDCl₃, 121MHz) δ 136.65 (d, J =12.59 Hz), 132.77, 127.30, 127.00, 126.79, 125.49, 30.24(d, J=69.05Hz), 21.87, 21.84, 19.62 HRMS (EI⁺) M⁺ for C₁₂H₁₉OP 210.11830, calcd. 210.11735

The enantiomerically pure ligands were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml/min, RT, UV 254nm, n-hexane /Ethanol=92.5/7.5, t_1 =7.23min, mp 144-147°C, []_D²¹ = +9.4° (C=0.265, CHCl₃), t_2 = 17.3min, mp 126-128°C, []_D²¹ = -9.8° (C=0.275, CHCl₃).

(2,4,6-trimethyl)-*tert*-butylphosphinoyl-benzene (6)

Colorless oil, isolated yield 21% over 2 steps. ^{31}P (CDCl₃, 75MHz) δ 38.16 (s) $^{1}H(CDCl_{3}, 300MHz)$ δ 1.16 (d, 9H, 3CH₃, J_{P-H} = 16.6Hz), 2.22 (s, 3H, CH₃), 2.49 (br, 6H, 2CH₃), 6.83 (br, 2H, 2CH), 7.55 (d, 1H, P-H, J_{P-H} = 455.59Hz) $^{13}C(CDCl_{3}, 121MHz)$ δ 139.81, 139.77, 128.67, 128.12, 120.23 (d, J=88.12Hz), 32.70 (d, J=69.05Hz), 22.78, 22.72, 20.45, 20.35, 19.12 HRMS (EI⁺) M⁺ for C₁₃H₂₁OP 224.13412, calcd. 224.13299 The enantiomerically pure ligands were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml /min, RT, UV 254nm, n-Heptane/2-propanol=95/5, t₁=8.971min, mp 109.5-112°C, []_D²¹ = -16.9° (C=0.255, CHCl₃), t₂=13.728min, mp 105-107°C, []_D²¹ = +20.4° (C=0.275, CHCl₃).

2-phenylphosphinoyl-naphthalene (7)

White solid, isolated yield 35%. ³¹P (CDCl₃, 75MHz) δ 21.38 (s) ¹H(CDCl₃, 300MHz) δ 6.85-7.00 (m, 5H), 7.01-7.35 (m, 6H), 7.72 (d, 1H, P-H, J _{P-H} = 483.18Hz), 7.90 (d, 1H, J=15.63Hz) ¹³C(CDCl₃, 121MHz) δ 133.07 (d, J=2.29Hz), 130.92, 130.71, 130.43, 128.91, 128.68, 127.74, 127.19, 126.94, 126.88, 126.57, 126.12, 125.73, 125.33, 123.309, 123.07 HRMS (EI⁺) M⁺ for C₁₆H₁₃OP 252.06907, calcd.252.07039

The enantiomerically pure ligands were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml/min, RT, UV 254nm, n-Hexane/2-propanol=56/44, t_1 =22.4min, mp 73-75°C, []_D²¹= -5.2° (C=0.27, CHCl₃), t_2 =26.859 min, mp 81-83°C, []_D²¹ = +6.0°(C=0.25, CHCl₃) (lit. ³ mp184-186°C, No independent measure of optical purity was given in this paper. In view of the low rotation reported the material must have had very low optical purity., []_D = -0.59°,C=0.476, CHCl₃).

(*1R*, 7*R*)-9,9-Dimethyl-4-hydrido-4-oxo-2, 2, 6, 6-tetraphenyl-3, 5, 8, 10-tetraoxa-4-phosphabicyclo [5.3.0] decane (8)⁴

In a 100ml Schlenk vessel, was placed (4R, 5R)-4,5-bis-(hydroxy-diphenylmethyl)-[1,3] dioxolane)(R,R-Taddol) (2mmol, 0.94g) and 5ml dry toluene. The solution was cooled down to -78°C, and PCl₃ (3.0mmol, 0.26ml) was added over 20mins. The solution was

allowed to come to RT and stirring was continued for 3h. After cooling down to 0° C, 5ml H₂O was added slowly. After warming up to RT stirring was continued for 30mins. The mixture was extracted with CH₂Cl₂ (3x10 ml), with brine (3x) and dried over MgSO₄. After removal of the solvent the residue was purified by flash chromatography (SiO₂, EtOAc/Hexane=1/1) to obtain a white powder; isolated yield 75%. Mp 224-226°C (dec.), []_D²¹ =-268.4° (C=0.275, CHCl₃), (lit. ⁴ mp 226-227°C, dec., []_D = -289.9°, C=1.56, CHCl₃), ³¹P (CDCl₃, 75MHz) δ -4.73, -4.79 (we presume the double peak is due to the presence of two slowly interconverting conformers) ¹H(CDCl₃, 300MHz) δ 0.56 (s, 3H, CH₃), 0.76 (s, 3H, CH₃), 5.21 (d, 1H, CH, J=7.82Hz), 5.36 (d, 1H, CH, J=8.06Hz), 7.08 (d, 1H, P-H, J_{P-H} =726.85Hz), 7.23-7.46 (m, 16H), 7.56-7.63 (m, 4H) ¹³C(CDCl₃,121MHz) δ 142.16 (d, J=2.68Hz), 141.65 (d, J=2.25Hz), 137.66 (d, J=8.78Hz), 137.45 (d, J=6.48Hz), 127.31, 127.22, 127.00, 126.83, 126.70, 126.51, 126.40, 126.04, 125.86, 125.38, 125.30, 112.90, 87.31, 87.14, 78.57, 78.30, 25.28, 24.79 MS(CI⁺,%) 530(M+NH₄⁺,100).

2, 5-diphenyl-phospholane-1-oxide (9)

This ligand was prepared according to a literature method⁵.

The pure enantiomers were obtained by preparative HPLC, chiralpak AD column, Preparative 250x20 mm ID flow 20 ml/min, RT, UV 254nm, n-heptane/isopropanol=75/25, t_1 =10.486min, t_2 =13.071min.

Imines

Imines were prepared from the ketones and the amines by azeotropic reflux in toluene using molecular sieves 4Å. All imines are known compounds⁶ with the exception of **13**.

(4-chlorophenyl)-N-[(E)-1-phenylethylidene]methanamine (13)

Isolated yield 44%, yellow oil, ${}^{1}H$ (CDCl₃, 300MHz) major isomer: δ 2.28 (s, 3H, CH₃), 4.63 (s, 2H, CH₂), 7.20-7.39 (m, 6H), 7.79-7.82 (m, 2H), 7.91 (d, 1H, J=7.32Hz) minor: δ 2.33, 4.88, ${}^{13}C$ (CDCl₃, 121MHz) major isomer: δ 165.53, 137.98, 130.78, 127.76, 127.29, 127.09, 126.91 125.40, 53.48, 16.83 minor: 164.69, 139.41, 127.83, 126.43, 124.45, 54.74, 14.44. In the ${}^{1}H$ NMR and the ${}^{13}C$ NMR some resonances of the minor isomer are obscured. HRMS (EI $^{+}$) $C_{15}H_{14}NCl$ 243.08030, calcd. 243.08147

Typical procedure for imine hydrogenation

In a 5ml glass vial provided with a magnetic stirrer, a mixture of [Ir(COD)Cl]₂ (3.4mg, 0.005mmol), SPO ligand (0.02 mmol), imine (0.5mmol) and pyridine (2eq. w.r.t. Ir, 2 1) were dissolved in dry toluene (3ml). 7 of these vials were placed in an autoclave, which was closed, purged 3 times with N₂ and 3 times with H₂. The autoclave was pressurized with H₂ to 20-25bar and the reactions were magnetically stirred at room temperature (unless noted otherwise). After the desired time, the autoclave was opened. The solvent in each vial was transferred to a 10ml round bottle and the solvent was removed under vacuum. Degree of conversion and selectivity was determined by ¹H NMR (CDCl₃). For the e.e. determination the amines were converted to their *N*-acetyl derivatives with 50 1 Ac₂O. After filteration on a short silica gel column the filtrate was analysed by HPLC (chiralpak AD or OD column). The absolute configuration was determined by comparing

with commercially available enatiomerically pure products. Racemic samples were prepared by NaBH₄ reduction of imines in ethanol as solvent for 30 minutes.

Table 1 HPLC data of N-acetyl derivatives of hydrogenation products ^a

Name	Column	Condition	t (min)	t (min)
Amine 10 (N-acetyl)	OD 250x4.6	Hep/IPA 95/5	t _R =11.573	t _S =14.101
Amine 11(N-acetyl)	AD 250x4.6	Hep/IPA 95/5	$t_1 = 16.821$	$t_2 = 18.955$
Amine 12(N-acetyl)	AD 250x4.6	Hep/IPA 95/5	$t_1 = 14.827$	$t_2 = 17.173$
Amine 13(N-acetyl)	AD 250x4.6	Hep/IPA 95/5	$t_1 = 11.403$	$t_2 = 13.685$
Amine 14(N-acetyl)	AD 250x4.6	Hep/IPA 95/5	$t_1 = 12.544$	$t_2 = 13.803$
Amine 15(N-acetyl)	OD 250x4.6	Hep/IPA 95/5	$t_1 = 10.731$	$t_2 = 15.307$
Amine 16 (free amine)	Wh01 250x4.6	Hep/EtOH 90/10	$t_1 = 6.603$	$t_2 = 8.651$
Amine 17 (free amine)	OD 250x4.6	Hep/IPA 90/10	$t_1 = 6.843$	$t_2 = 8.122$

^a General conditions for HPLC: flow rate 1.0ml/min, RT, UV 220 nm

References

¹ Haynes, R. K.; Au-Yeung, T. L.; Chan, W. K.; Lam, W. L.; Li, Z. Y.; Yeung, L. L.; Chan, A. S. C.; Li, P.; Koen, M.; Mitchell, C. R.; Vonwiller, S. C. *Eur. J. Org. Chem.* **2000**, 3205.

² Grim, S. J. Inorg. Nucl. Chem. **1977**, 39, 499.

³ Cervinka, A.;Belovsky, O.; Hepnerova, M. J. Chem. Soc. D. 1970, 562.

⁴ Alexakis, A.; Burton, J.; Vastra, J.; Benhaim, C.; Fournioux, X.; van den Heuvel, A.; Leveque, J. M.; Maze, F.; Rosset, S. *Eur. J. Org. Chem.* **2000**, 24, 4011.

⁵ Guillen, F.; Fiaud, J. C. Tetrahedron Letters. 1999, 40, 2939.

⁶ (a) Willoughby, C. A.; Buchwald, S. L. J. Am. Chem. Soc. 1994, 116, 8952. (b) Guthrie, R. D.; Burdon, L.; Lovell, F. J. Org. Chem. 1973, 38, 3114. (c) Lenz, G. R.; Costanza, C.; Lessor, R. A.; Ezell, E. F. J. Org. Chem. 1990, 55, 1753. (d) Vachal, P.; Jacobsen, E. N. Org. Lett. 2000, 2, 867. (e) Lensink, C.; de Vries, J. G. Tetrahedron: Asymmetry 1992, 3, 235-238. (f) Hsue, I. J. Chem. Soc. 1935, 1778. (g) Vetter, A. H.; Berkessel, A. Synthesis 1995, 419. (h) Satterthwait, A. C.; Westheimer, F. H. J. Amer. Chem. Soc. 1980, 102, 4464. (i) Krzyzanowska, B.; Stec, W. J. Synthesis 1982, 270.